Laser-Induced Breakdown Spectroscopy (LIBS)
Laser-Induced Breakdown Spectroscopy (LIBS)

High-Accuracy LIBS with Nanosecond and Picosecond Time Resolution Enabled by Ultrasensitive emICCD Technology
Introduction
Laser-induced breakdown spectroscopy (LIBS) is considered one of the most convenient and efficient analytical techniques for trace elemental analysis in gases, solids, and liquids. Both non-invasive and non-destructive, LIBS requires little-to-no sample preparation and can easily be performed either in the lab or in the field in hazardous industrial environments in real-time. Remote measurements can be done from more than 50 meters’ distance.
During LIBS, typically, but not always, a short laser pulse generated at 1064 nm by an Nd:YAG laser is focused on a sample (see Figure 1). Laser energy heats, vaporizes, atomizes, and ionizes target material, generating a small area of plasma. Excited atoms and ions in the plasma emit secondary light that is collected and resolved by a spectrometer and directed to a high-speed, high-sensitivity photodetector. Each chemical element has a unique spectral signature that can be discerned from the obtained spectra. As a result, the multi-elemental composition of the sample can be determined instantly.
Related News
What is LIBS?
2022-12-09 338