What is the Imaging Spectroradiometer?
What is the Imaging Spectroradiometer?
The structure of the imaging spectrometer consists of an entrance slit, a dispersion system, an imaging system and one or more exit slits. The electromagnetic radiation of the radiation source is separated into the required wavelength or wavelength region by the dispersive element, and the intensity is measured at the selected wavelength. The radiant energy of the ground target passes through the pointing lens, is collected by the objective lens and irradiated on the dispersive element through the slit enhanced collimation, the dispersive element is spectrally dispersed in the straight strip direction, and the condenser lens is used to converge and image the two-dimensional CCD used in the sensor. The area array exploration elements are scattered on the focal plane of the spectrometer.
The imaging spectrometer provides fast, simple, repeatable, and more importantly, non-invasive qualitative and quantitative analysis. It does not require sample preparation, and the sample can be measured directly through a fiber optic probe or through glass, quartz, and fiber optics. When investigating in a straight direction, in addition to the Rayleigh scattering with the same frequency as the original incident light, there are also a series of symmetrically scattered Raman lines that are weakly displaced with the incident light frequency.
A transmissive volumetric holographic diffraction grating is used, which has the characteristics of low stray light and low absorption in the visible light to near-infrared waveband. Since the core part is sealed in glass or other transparent materials, it has a long life, is easy to clean, and is resistant to scratches. It is very suitable for various harsh outdoor application environments. The previous working method was mainly push-broom type. In order to realize the scanning process, an external scanning platform is generally used to drive the operation of the spectrometer. Because the scanning platform is relatively heavy and increases power consumption, it brings a lot of inconvenience to field work. Therefore, the new imaging spectrometer cancels the scanning platform and changes to a built-in scanning design, which reduces the weight and energy consumption of the whole machine, and can directly measure vertically downwards, which is more conducive to field use.
On the basis of hyperspectral measurement, it has the advantage of unifying the spectrum. It can be accurate to a single point on the leaf to detect the characteristics of different stress symptoms of the crop, and can also obtain the spectral information of the surface of the stressed crop, and the combination of point and surface can comprehensively reflect the degree of stress on the crop. Therefore, imaging spectrometers have become a research hotspot at the world. Scholars use hyperspectral imaging technology to quantitatively extract the characteristics of various stresses suffered by crops, analyze the leaves and local areas of the leaves based on high-resolution images, so as to carry out mechanism detection and research on a more microscopic scale.
Related News
Precision fertilization by UAV for rice at tillering stage in cold region based on hyperspectral remote sensing prescription map
2023-02-01 375New product|recommendation-GF900 UAV-borne laser methane telemetry system
2023-08-30 54Application of UAV-hyperspectral imaging for rice growth monitoring
2023-01-18 508Application of hyperspectral camera in industrial inspection
2023-01-17 337Estimation Scheme of Rice Yield Based on UAV Hyperspectral Images
2023-01-17 287Surveillance of pine wood nematode disease based on satellite remote sensing images
2023-01-16 315UAV forest fire patrol protection plan
2023-01-16 318Application of Hyperspectral Imager in Disguised Target Recognition(part 2)
2023-01-13 356Application of hyperspectral imager in detection of exogenous pests in jujube fruit
2023-01-11 375Application of UAV Hyperspectral in Garbage Sorting
2023-01-10 343Application of Hyperspectral Imager in Disguised Target Recognition(part 1)
2023-01-10 306What is the hyperspectral imaging?
2023-01-05 334Study on the degree of damage to the Asian carlocust with hyperspectral remote sensing model
2023-01-03 300Nitrogen detection in cotton leaves based on hyperspectral
2022-12-23 288FAQ_HYPERSPECTAL IMAGER FAQ
2022-08-22 953Using ATHL9010 to estimate above-ground carbon stocks at the single-tree scale in subtropical forests
2022-02-25 1083Airborne Hyperspectral Imaging in Early Monitoring of Pine Wood Nematode
2022-01-14 877A Study on Eutrophication of Lake Based on Hyper-spectraI Remote
2022-01-07 628Application of Hyperspectral in the Construction of Hongshan Polymetallic Prospecting Model
2022-01-07 580Vegetation Classification of Alpine Grassland in Qinghai Lake Basin Based on HSI hyperspectral remote sensing data
2022-01-07 614